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Highlights

• We compare climate variability observed in paleoclimate data to GCM simulations.
• Proxy system modeling is used to enhance this data-model comparison in the frequency domain.
• Paleoclimate records exhibit larger low-frequency variability than GCMs currently simulate.
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Abstract8

The spectral characteristics of paleoclimate observations spanning the last millennium suggest the presence

of significant low-frequency (multi-decadal to centennial) variability in the climate system. Since this low-

frequency climate variability is critical for climate predictions on societally-relevant scales, it is essential to

establish whether General Circulation models (GCMs) are able to simulate it faithfully. Recent studies find

large discrepancies between models and paleoclimate data at low frequencies, prompting concerns surround-

ing the ability of GCMs to predict long term, high-magnitude variability under greenhouse forcing (Laepple

and Huybers, 2014a,b). However, efforts to ground climate model simulations directly in paleoclimate ob-

servations are impeded by fundamental differences between models and the proxy data: proxy systems often

record a multivariate and/or nonlinear response to climate, precluding a direct comparison to GCM output.

In this paper we bridge this gap via a forward modeling approach, coupled to an isotope-enabled GCM.

This allows us to disentangle the various contributions to signals embedded in ice cores, speleothem calcite,

corals, tree-ring width, and tree-ring cellulose. The paper addresses the following questions: (1) do forward

modeled “pseudoproxies” exhibit variability comparable to proxy data? (2) if not, which processes alter the

shape of the spectrum of simulated climate variability, and are these processes broadly distinguishable from

climate? We apply our method to representative case studies, and parlay these insights into an analysis of

the PAGES2k database (PAGES2K Consortium, 2013). We find that current proxy system models (PSMs)

can help resolve model-data discrepancies on interannual to decadal timescales, but cannot account for the

mismatch in variance on multi-decadal to centennial timescales. We conclude that, specific to this set of

PSMs and isotope-enabled model, the paleoclimate record may exhibit larger low-frequency variability than
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GCMs currently simulate, indicative of incomplete physics and/or forcings.

Keywords: climate variability, general circulation models, data-model comparison, paleoclimatology9

1. Introduction10

Our understanding of the complex dynamics of climate response to anthropogenic forcing rests jointly11

upon observations over the instrumental period, general circulation models (GCMs), and paleoclimate data.12

GCMs provide a basis for exploring the mechanisms driving forced and stochastic climate variability; how-13

ever, improved predictions of decadal- to centennial-scale hydroclimatic variability from GCMs may depend14

crucially on constraints from high-resolution paleoclimate observations (e.g. Mann et al., 2009; PAGES2K15

Consortium, 2013). Such data provide much-needed statistics for climate variability and augment the rela-16

tively short instrumental record. Thus, combining data from both models and high-resolution paleoclimate17

records yields meaningful advances for understanding future climate.18

Constraining climate models with paleoclimate data requires a robust method for comparing the two. Re-19

cently, a number of studies have compared GCM simulations and paleoclimate data in the frequency domain,20

applying spectral analysis to both the simulated and observed climate record. For temperature, precipitation,21

or any other key indicator in a paleoclimate archive, comparing the power spectral densities (PSDs) across22

models and data allows one to assess the dominant modes of variability in both signals (Kutzbach, 1976;23

Hays et al., 1976; Huybers and Curry, 2006). Recently, Laepple and Huybers (2014a,b) showed that com-24

monly employed proxies for Holocene sea surface temperature (SST) exhibit a spectrum of SST variability25

inconsistent with GCM simulations on millennial timescales. Similarly, Ault et al. (2013) found that last-26

millennium terrestrial records from western North American exhibit larger low-frequency variability (and27

larger spectral slopes) when compared to the suite of CMIP5 Last-Millennium GCM simulations (Taylor28

et al., 2012; Landrum et al., 2013). While the absolute variability simulated in climate models is different29

from the shape of the power spectrum (which measures variability as a function of timescale), the two are30

closely related (we evaluate both via Supplementary Information, SI hereafter); the spectrum observed in31

these paleoclimate records implies scaling behavior originating from the climate system, and high variabil-32

ity on longer timescales. Scaling behavior can also imply longer climate-system memory of extreme events,33

such as megadrought (Ault et al., 2013, 2014). Thus, the mismatch in the shape of the spectrum simulated34
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by GCMs vs. that observed in paleoclimate data has been invoked as deficiencies in the ability of GCMs to35

simulate climate with a level of realism required for predicting decadal to centennial variability (Laepple and36

Huybers, 2014a,b). Such findings harbor important implications about risk prediction using climate models37

(e.g. future drought in the southwest U.S.(Ault et al., 2014)).38

The direct comparison of climate model output with paleoclimate observations involves three main chal-39

lenges (e.g. Ault et al., 2013): (1) Internal variability in models is not directly comparable to paleoclimate40

data in time; (2) biases in climate models limit their ability to correctly simulate extremes in hydroclimate;41

(3) proxy archives naturally filter and distort the original climate signal, confounding direct comparisons42

of paleoclimate data to climate model variables. To address the first two of these issues, comparing PSDs43

removes model biases while comparing time-scale dependent variances, and ignores phase relationships44

(which are not expected not match because of natural climate variability, inter alia), allowing a more robust45

analysis of the partitioning of variance across different timescales in models vs. data (Ault et al., 2013).46

In this study, we take additional measures to address the third challenge, which relates to the filtering47

of the initial climate signal by proxy systems. A conversion step is needed to translate between model48

output and the proxy signal. Accomplishing a major part of this conversion, recent advances in climate49

modeling have allowed for the explicit incorporation of stable water isotope tracers in both the atmosphere50

and the ocean (see Table S7, SI). For water isotope-based proxy systems, stable water isotopes translate51

between the dynamical climate model variables (e.g. temperature and precipitation) and the geochemical52

signal that the proxy data encode (e.g. δ18O of precipitation). Adding water isotope physics to GCMs53

provides crucial insight, helping to determine the drivers of isotopic variations observed in proxy data and54

associated climate patterns (Sturm et al., 2010). Embedded water-isotope physics bring us closer to a direct55

comparison between models and data, but do not account for physical processes by which proxy systems56

alter and subsequently record the original climate signal. In an effort to avoid assumptions inherent to57

inverse approaches (e.g. inverse-method or calibration-based reconstructions in paleoclimate), we turn to58

proxy system modeling (for a review, see Evans et al., 2013; Dee et al., 2015a), and employ a new approach59

using both water isotope physics and proxy system models (PSMs) as tools for simulating each individual60

process that alters the original climate signal (be it biological, physical, or geochemical). Dynamical and61

isotope variables are translated to proxy units for a direct comparison between GCM output and observations62
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(a forward approach).63

Our study builds upon the analysis of Ault et al. (2013) and Laepple and Huybers (2013, 2014a,b) by64

employing this forward approach for data-model comparison in the frequency domain. In general, there65

are two methods that allow for a meaningful comparison of proxy and model spectra. One is the inverse-66

method correction of the proxy spectra accounting for the distortion applied by the recording processes (e.g.67

Laepple and Huybers, 2013, which essentially applies an inverted forward model of the proxy), and one68

is the forward modeling employed in this manuscript, which in many cases efforts increased flexibility. In69

this study, we use forward modeling to disentangle the multivariate influences on proxy data using state-of-70

the-art PSMs for ice cores, corals, tree-ring cellulose, speleothem calcite (Dee et al., 2015a) and tree-ring71

width (Tolwinski-Ward et al., 2010). Within this novel framework, we address the following questions: (1)72

are there proxy system processes that alter the spectrum of simulated (hydro)climatic variability, and are the73

impacts of these processes distinguishable from climate in spectral space? (2) accounting for these processes,74

do GCM+PSM-driven pseudoproxies exhibit spectral characteristics comparable to proxy observations?75

Section 2 outlines our experimental design, and Section 3 gives results showing case studies for the76

piece-wise transformation of the climate signal down to proxy units. We extend this analysis to a global77

scale using the PAGES2k Phase 1 Network in Section 4. Finally, we discuss the limitations and caveats of78

our approach, and suggestions for future research, in Section 5.79

2. Methods80

2.1. GCM & PSM-Generated Pseudoproxies81

To provide climate model estimates of hydroclimate variability over the last millennium, as well as82

climate fields for the PSM-generated network, we use the water isotope enabled GCM SPEEDY-IER (Dee83

et al., 2015b) (see SI Section S8 for details). We forced a transient simulation of SPEEDY-IER with sea84

surface temperatures from the last millennium simulation (Landrum et al., 2013) of the CCSM4 coupled85

model (Gent et al., 2011), spanning 850-2005 (1000-2005 considered for this study). We generate synthetic86

proxy time series using ‘proxy system models’ (PSMs Evans et al., 2013; Dee et al., 2015a). PSMs convert87

the simulated climate (e.g. temperature, precipitation) into a proxy time series. A given PSM includes three88

sub-models, each of which mimics a separate modification of the original input signal as it would occur89
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in nature: (1) a sensor model, which describes any physical, geochemical or biological processes altering90

the climate signal; (2) an archive model, which accounts for any processes that affect the emplacement of91

the signal in the proxy medium, and (3) an observation model, which accounts for dating uncertainties and92

analytical errors in the final measurement made on the paleoclimate data (Dee et al., 2015a). The sub-model93

framework of PSMs helps to quantify changes that occur at each stage of the climate signal’s evolution94

through the proxy system.95

Each proxy type employs its own unique PSM. We used VS-Lite (Tolwinski-Ward et al., 2010) to gener-96

ate tree ring width records for all of the tree proxy locations using temperature and precipitation fields from97

the isotope-enabled model SPEEDY-IER. We model ice core, coral, speleothem, and tree cellulose records98

using fields from CCSM4/SPEEDY-IER coupled with a synthesis of previously published models for water99

isotopes in high-resolution proxy data (PRYSM v.1.0, Dee et al., 2015a). We apply these models to the in-100

dividual case study locations listed below in Section 3 and to the larger PAGES2k Phase 1 network (Section 4101

(PAGES2K Consortium, 2013). The complicated nature of proxy data (e.g. chronological uncertainties and102

impacts on phasing) precludes point-to-point comparisons of time series, and thus there is a strong case for103

comparing simulated proxy to the observations in the frequency domain.104

2.2. Data-Model Comparison in the Frequency Domain105

To assess both models and paleoclimate data in frequency space, a power law scaling parameter β,106

defined as S ( f ) ∝ f −β (where f is frequency and S ( f ) is the power spectral density (Pelletier and Tur-107

cotte, 1997; Huybers and Curry, 2006)) characterizes the distribution of variance in a system over a given108

timescale, and gives some indication of the spectrum’s shape. In general, a high, positive value of β implies109

a red spectrum, with more variance on longer timescales. A negative value of β implies a ‘blue’ spectrum,110

with more variance on shorter timescales, and a ‘white’ spectrum (β ∼ 0) implies uniform variance dis-111

tribution across all timescales (Ault et al., 2013). We use the spectral slope (β) as the key metric in this112

study for comparing climate model output to paleoclimate observations. We estimate power spectra of the113

climate model data and annually-resolved paleoclimate data using Thomson’s multi-taper method (Thom-114

son, 1982) and estimate power spectra for unevenly-spaced paleoclimate data (speleothems only) using the115

Lomb-Scargle method (Lomb, 1975; Scargle, 1982). While both methods contain known biases (Schulz and116
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Mudelsee, 2002; Vyushin and Kushner, 2009; Rehfeld et al., 2011) the two methods yield similar results for117

evenly spaced data (see SI Sec. S6, S7), and are necessary because the cave paleoclimate time series are not118

annually resolved and unevenly spaced in time. We apply the same methodology to all records uniformly,119

reducing the impacts of the methodological biases on our results. β is calculated as the least-squares regres-120

sion of the log-log transformed spectral density and frequency. Following the methodology of Huybers121

and Curry (2006) and Ault et al. (2013), we first bin spectral densities (at equal 0.2 · log10 intervals) to avoid122

overemphasis of high-frequency variance in regression calculations. We calculate β according to timescale123

of variability: βD is the decadal to centennial variability parameter (referenced in the text as low-frequency124

variability), and βI is the interannual variability parameter (referenced in the text as high-frequency variabil-125

ity). We calculated βD and βI with slopes restricted to periods of [20 to 200] and [2.5 to 8] years, respectively.126

Characteristic spectral slopes for large-scale temperature fields and in GCM simulations have been quanti-127

fied in a number of studies(Fraedrich and Blender, 2003; Huybers and Curry, 2006; Vyushin and Kushner,128

2009; Vyushin et al., 2009; Henriksson et al., 2015; Fredriksen and Rypdal, 2015), and are summarized in129

the SI (Section S4). Throughout the results that follow, we compare the piece-wise slopes of the PSDs across130

the two major (interannual, decadal to centennial) timescales.131

3. Case Studies132

We employ high-resolution records for five major proxy types, including corals, tree-ring width, ice core133

δ18O, tree ring cellulose δ18O, coral δ18O, and speleothem calcite δ18O as test cases. We opted to employ134

annually to near-annually resolved records to maximize the potential for frequency range comparison with135

GCM data (i.e. frequencies from 1/2 years to 1/2*length of record) and to avoid the complicating effects136

of age offsets (Comboul et al., 2014), which can ‘blur’ the precision of the spectrum (e.g., see Dee et al.,137

2015a). Illustrative case studies spanning distinct climatic zones demonstrate the viability of our approach.138

We collected published data for each site and then compared the spectra of each time series to a PSM-139

generated record for the same location. Proxy data types, locations, time spans, mean resolution of data, and140

citations are given in Table 1.141

A preliminary model experiment using white noise climate input and five case studies demonstrate how142

proxy system processes alter the input climate signal. For each proxy type we computed the GCM-derived143
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Site Lat Lon Observation Citation Dates (CE) Mean

Reso-

lution

(yrs)

Palmyra Island 5.89 -162.1 Coral δ18OARAGONITE (Cobb et al., 2003; Emile-Geay et al., 2013a) 1146-1998∗ 1

Palestina Cave -5.92 -77.35 Cave δ18OCALCITE (Apaéstegui et al., 2014) 421-1928 4

Cascayunga Cave -6.07 -77.18 Cave δ18OCALCITE (Reuter et al., 2009) 1088-1907 2

Huagapo Cave -11.27 -75.79 Cave δ18OCALCITE (Kanner et al., 2013) 559-2000 5

Diva de Maura Cave -12.37 -41.57 Cave δ18OCALCITE (Novello et al., 2012) -815-1911 5

Lhamcoka, Tibet 31.817 88.1 Tree δ18OCELLUOSE (Wernicke et al., 2015) 1193-1996 1

Boibar, Pakistan 36.37 74.59 Tree δ18OCELLUOSE (Treydte et al., 2009) 1000-1998 1

Austfonna, Norway 79.8 24.02 Ice Core δ18O (Isaksson et al., 2005) 1400-1953 1

Lomonosovfonna, Svalbard 78.87 17.4 Ice Core δ18O (Isaksson et al., 2005) 1400-1997 1

NGRIP, Greenland 75.1 -42.32 Ice Core δ18O (Vinther et al., 2010) 0-1995 1

Quelccaya, Peru -13.93 -70.83 Ice Core δ18O (Thompson et al., 2013b) 226-2009 1

Malpais, New Mexico 34.97 -108.18 Tree Ring Width (Grissino-Mayer, 1995) -130-1992 1

Wild Rose, Colorado 39.02 -108.23 Tree Ring Width (Woodhouse et al., 2006) 1000-2002 1

Upper Wright Lakes, California 36.62 -118.37 Tree Ring Width (Bunn et al., 2005) -216-1992 1

Beef Basin, Utah 37.93 -109.8 Tree Ring Width (Pederson et al., 2011) 350-2005 1

Table 1: List of sites forward modeled and evaluated in this study. By building a workflow connecting paleoclimate proxy data, a

climate model, and proxy system models, we evaluate spectral scaling characteristics for five proxy types in four regional case studies.

Corals, Ice Cores, Speleothems, Tree-Ring Width, Tree-Ring Cellulose. ∗ Note that the Palmyra coral record is continuous in the

interval 1146-1464: we use the previously published, continuous part of the record in this study. This segment has been updated since

(Cobb et al., 2003).

spectrum for each record in a piece-wise fashion: power spectral density of GCM-simulated precipitation144

and temperature, GCM-simulated water isotope variables, and finally the full PSM output to compare with145

the observed spectrum. The ‘perfect model’ design tracking climate to proxy space includes assumptions146

at each step, and identifying these uncertainties explicitly is often challenging. Here we attempt to identify147

where discrepancies arise when comparing paleoclimate observations to climate model data.148

In general, using a single proxy location to constrain climate models is erroneous because of disparities149

of scale. Various approaches including downscaling or bias correction can help to minimize such problems,150

or paleoclimate data can be aggregated to match GCM grid cell size. Here, we use single or multiple point-151

based observations alongside a single model grid-cell simulated pseudo proxy to identify proxy processes152

which influence the shape of the power spectrum, but we acknowledge that robust data-model comparisons153

require the use of proxy data aggregated from a broad region (e.g. Ocean2k Tierney et al., 2015). For each154

proxy type, we attempt to answer whether the mismatch arises from a lack of low-frequency variability155

simulated by the GCM SPEEDY-IER, or from a data-model comparison strategy problem. Our results are156

presented as a function of timescale: interannual (βI) vs. decadal to centennial (βD). For completeness, we157

report absolute variance for all case studies and the PAGES2k data in SI Section S3.158
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a. Ice Core δ18O

‘Spectral Fingerprints’ By Proxy Type

b. Carbonates: Coral δ18OARAGONITE , Speleothem δ18OCALCITE c. Tree Ring Width, Tree Ring δ18OCELLULOSE
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Figure 1: Spectra and β values by proxy type and as a function of timescale. Estimated Power Spectral Density for a purely white

noise input climate signal, leaving the effects of the proxy system only. Each PSM was forced with white noise climate input 10,000

times. The median spectrum is shown as the solid line, and shading represents the 95% confidence interval. a. Ice Core δ18O, b.

Carbonates (Coral and Speleothem δ18O) c. TRW, Tree Ring Cellulose δ18O.

3.1. Spectral Fingerprinting of Proxy Systems159

As a first pass, we forced each PSM with white noise climate inputs to assess the impact of proxy system160

processes alone on the shape of the spectra. In contrast to studies which impose the effects of autocorrelation161

mathematically (or smooth the data using a Gaussian filter, for example) (e.g. Cook et al., 2004), for each162

proxy type, the PSMs resolve the spectrum that results from proxy system processes alone, as well as the163

resulting β values; we can then quantify the ‘reddening’ that occurs independently from climate due to164

autocorrelation processes. Fig. 1 shows the median and 95% confidence intervals of the PSDs for 1000165

simulations generated with randomly generated Gaussian white noise input climate (PSM parameters for166

the white noise exp. given in SI Table S1 and Section S2). As we will demonstrate in the case studies167

that follow, the effects of processes such as diffusion, karst residence time, and soil-moisture memory give168

rise to large positive β values over interannual timescales (Fig. 1). For ice cores, speleothems, and tree169

ring widths, the white noise + PSM simulations demonstrate significant autocorrelation with β > 0.8 on170

interannual timescales (2-8 years). Thus, even without variable climate inputs, the proxies themselves impose171

a characteristic spectral shape at interannual timescales. However, the cellulose oxygen isotope PSM does172

not impose any spectral scaling outside of the input, and returns a white spectrum. For all proxy types,173
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the spectra revert to the shape of the white input climate signal on decadal and longer timescales. Under174

different PSM formulations these spectra could change significantly, and this non-unicity proves a large175

source of uncertainty. We find that while proxy system processes modeled here may account for significant176

reddening at the interannual frequency band, they do not appear to impart reddening at low frequencies. We177

acknowledge that this lack of low frequency reddening could be alternatively regarded as a deficiency of the178

PSMs at lower frequencies, or poorly represented (or unknown) proxy system processes; however, the lack179

of low-frequency amplification is potentially an expression of reality.180

3.2. Proxy Results181

3.2.1. Corals182

The Palmyra fossil coral record resolves ENSO variability over the last millennium at annual resolution,

and captures both local and large-scale tropical Pacific SST variability (Cobb et al., 2003; Emile-Geay et al.,

2013a). Coral δ18O also reflects the oxygen isotope composition of seawater, which tends to closely track

local changes in salinity. Our first case study concerns parametric uncertainties in coral proxy systems and

their influence on spectral shape. We employ a proxy system model for oxygen isotopes in coral aragonite

to convert ocean model (CCSM4) output (SST, SSS) to δ18O (Thompson et al., 2011). Table 2 gives the β

values for simulated vs. observed δ18OCORAL. The coral PSM, as described in Thompson et al. (2011), is a

simple bivariate linear model:

δ18Opseudocoral = α1 · S S T + α2 · S S S (1)

where coefficient α1 = −0.22�/◦C is the relationship between oxygen isotopic equilibrium and formation183

temperature of carbonates, and α2 is the empirical estimate for the regional SSS-δ18OS W slope reported184

by LeGrande and Schmidt (2006). To investigate the impact of parametric uncertainties on the measured185

signal, we changed (α2) to alter the degree of the coral δ18O sensitivity to local salinity. With α2 = 0, the186

corals become simple linear responders to temperature. As a second experiment, measured α2 slopes were187

increased by 200% to mimic the case where the corals exhibit heightened salinity sensitivity. The results are188

shown in Fig. 2.189
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Coral βI (Obs) βI (Sim) Different? p-value βD (Obs) βD (Sim) Different? p-value

Palmyra 1.95 1.11 1.26 1.25

PAGES2k Corals 1.36 0.88 no 0.16 1.02 0.03 yes 0.0002

Ice Core βI (Obs) βI (Sim) Different? p-value βD (Obs) βD (Sim) Different? p-value

Austfonna 1.66 0.88 0.86 0.83

Lomonosovfonna 0.95 1.17 0.26 0.74

NGRIP 0.99 0.73 -0.48 -0.09

Quelccaya 0.82 1.08 -0.36 0.16

PAGES2kIce Cores 1.87 1.08 yes 0.01 0.16 0.18 no 0.76

Cellulose βI (Obs) βI (Sim) Different? p-value βD (Obs) βD (Sim) Different? p-value

Lhamcoka 0.27 0.42 0.91 -0.54

Boibar 0.88 0.41 -0.02 -0.55

Speleothem βI (Obs) βI (Sim) Different? p-value βD (Obs) βD (Sim) Different? p-value

Palestina Cave n/a n/a 0.67 0.56

Cascayunga Cave n/a n/a 1.41 0.60

Huagapo Cave n/a n/a -0.19 0.31

Diva de Maura Cave n/a n/a 1.96 0.08

Tree Ring Width βI (Obs) βI (Sim) Different? p-value βD (Obs) βD (Sim) Different? p-value

CA mod negex -0.01 0.43 0.30 0.16

CA VS-Lite 0.87 0.19

CO mod negex -0.01 0.28 0.79 0.09

CO VS-Lite 0.85 0.52

NM mod negex 0.12 -0.44 -0.18 0.68

NM VS-Lite 1.01 0.42

UT mod negex 0.60 0.65 0.08 0.56

UT VS-Lite 0.71 -0.54

PAGES2k Tree Rings 0.59 -0.04 yes <0.0001 0.49 0.13 yes <0.0001

Table 2: βI and βD values for coral, ice core, speleothem, and tree ring cellulose sites, simulated vs. observed for all case studies and

the PAGES2k Database. βI is calculated as the mean slope between 2 and 8 years (interannual), and βD is the mean slope between

20 and 200 years (decadal to centennial). Mean PAGES2k vs. PSM simulated overall β values for Coral, Ice Core, and Tree Ring

PAGES2k sites with test statistics for difference-of-mean Mann-Whitney/Wilcoxon Rank-Sum tests are given alongside case studies.

For TRW, β values were calculated for the four tree ring width sites listed in Table 1, simulated vs. observed, using the Modified

Negative Exponential (negex) detrending method and simply calculating the slope after simulating the TRW using the forward model

VS-Lite (no detrending). We report difference of means test statistics for the PAGES2k data only, as we have a full distribution of

values for these data as opposed to the single-point case studies, where a difference of means test is not appropriate. See SI Table S6 for

a comparison of six different detrending methods including RCS, Modified Negative Exponential (negex), Linear, Spline, Hugershoff.

Uncertainty in α2 results in only minimal obfuscation of the original climate signal (SST). Regions with190

large variability in salinity will exhibit heightened sensitivity to uncertainty in the slope of the regional re-191
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lationship between SSS and δ18OS W , as the contribution of salinity anomalies to the total simulated coral192

signal is amplified (Thompson et al., 2013a). However, the narrow window due to salinity variations around193

the power spectrum shows that the corals are generally strong SST proxies (or, possibly, that the GCM com-194

pletely underplays salinity variability). Testing the effects of parametric uncertainty for the corals provides195

an example of how PSMs can be used to inform data-model comparison. More interestingly, discrepancies196

exist between the simulated and observed power spectrum on decadal to centennial timescales.197

Interannual Scaling. Both the simulated and observed coral time series show high variance on interannual198

timescales, with βI (observed) = 1.95, βI (simulated) = 1.11. The 2-8 year interannual band cutoff captures199

variance on ENSO timescales. However, observed βI does significantly exceed modeled βI values (see200

pink curve in Fig. 2), and may suggest either (1) undersensitivity of the coral PSM to variable SSTs, (2)201

biological or geochemical effects in the real corals that are not captured by the PSM, or (3) an erroneous202

ENSO representation in the GCM.203

Decadal to Centennial Scaling. Despite agreement in βI , at the 20-200 year band, Fig. 2 shows a pronounced204

difference between the observed (dotted black line) and simulated (pink line) coral δ18O values. The differ-205

ence in the the simulated vs. observed βD for the coral case study is 1.25 vs. 1.26, indicating that simulated206

values on decadal timescales are roughly equivalent. However, in examining the larger pool of PAGES2k207

coral data given in Table 2, the PSM seems to vastly underestimate decadal variability. Further, if we in-208

stead evaluate both in terms of absolute variance, the Palmyra record exhibits larger σ at the decadal band209

as compared to the PSM-simulated data (SI Section S3). While the PSM-generated pseudo-coral captures210

interannual SST variability similar to observations, the PSM seems not to account for the larger variance in211

the observations on longer timescales, and this discrepancy remains even when uncertainties in the coral’s212

sensitivity to salinity and δ18OS W are taken into account.213

3.2.2. Ice Cores214

We selected ice core data from four different sites representing a wide geographic range (see Tab. 1). The215

Quelccaya ice cores record a combination of precipitation and temperature changes driven by tropical Pacific216

SST variability (Thompson et al., 2013b). The Greenland (NGRIP) and Svalbard ice cores (Austfonna and217
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Lomonosovfonna) also record a combination of temperature and precipitation variability (Vinther et al.,218

2010; Isaksson et al., 2005).219

Observed and simulated β values for ice cores are given in Table 2, and Fig. 3 shows the power spectra220

for four well-known ice core sites with annually-resolved data spanning the last millennium. The simulated221

ice cores illustrate the dominance of temperature vs. precipitation variability on the δ18OICE signal; δ18OP222

variance closely tracks the temperature spectrum at each site. Diffusion emerges as a dominant control on223

the spectra for ice cores at high frequencies, but as with the coral data, simulated and observed ice core data224

tend to diverge at lower frequencies.225

Interannual Scaling. Fig. 3 illustrates the comparatively larger variance loss on interannual timescales in ice226

cores due to diffusion and compaction processes. This occurs at all sites for the simulated ice cores as well227

as observed. The positive βI values (see Table 2) are a result of processes that give rise to autocorrelation228

in the proxy data. Autocorrelation due to diffusion in the firn emerges at high frequencies (especially if229

simulated snow accumulation rates at the ice core site are too low). The temperature and precipitation data,230

both simulated and instrumental, do not agree with the proxy data on these timescales: resultant βI values231

are highly influenced by proxy processes.232

Indeed, when we discount the effects of diffusion, there is more agreement in β between the ice core233

records and the simulated temperature, precipitation, and water isotope ratios. For example, Fig. 4 shows234

the simulated vs. observed spectra for NGRIP varying the diffusion length (σ) in the ice core PSM in235

1000 random simulations from 1
2

to 2 · σ, and we find that variance loss at high frequencies increases236

with increasing diffusion length. Conversely, when we remove the diffusion and compaction model, the237

simulated δ18OPRECIP (dark blue line in Fig. 4) shows a much flatter spectral slope; the simulated δ18OICE238

shows agreement with the observed spectrum for NGRIP when the diffusion and compaction processes239

are applied (purple line). These results suggest that the diffusion model component of the ice core PSM240

correctly estimates the effects of down-core diffusion at high-frequencies, reddening the power spectrum at241

interannual but not at decadal timescales.242

Decadal to Centennial Scaling. On decadal to centennial timescales, differences in the observed vs. sim-243

ulated spectral slopes are more modest than for interannual, but three of the records tend to increasingly244
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diverge at low frequencies (see Fig. 3). Examining Fig. 3, the spectral characteristics of the simulated245

δ18OPRECIPvs. the observed ice core values exhibit some agreement on multi-decadal frequencies, but the246

model does not simulate comparable variance in the observations on longer (>centennial) timescales (see247

Fig. 3). This suggests that neither the GCM, the water isotope physics in the GCM, nor the PSM can account248

for observed low frequency variability.249

3.2.3. Speleothems250

We selected four tropical South American Speleothem Records which are sub-decadally resolved with a251

mean resolution 2-5 years (refs: Tab. 1). These records have been interpreted as an archive of variability in252

local precipitation amount (i.e. Diva de Maura, Novello et al. (2012)), intensity of convection, and the overall253

strength of the South American Monsoon (Kanner et al., 2013; Reuter et al., 2009; Apaéstegui et al., 2014).254

Hydroclimatic variability in this region closely follows both tropical Atlantic SSTs as well as tropical Pacific255

SST variability (Yoon and Zeng, 2010; Nobre et al., 1991). We simulate cave dripwater using a conceptual256

model which takes temperature, precipitation amount, and the δ18O of weighted precipitation into account.257

The PSM also simulates the groundwater storage (i.e. karst transit time, τ) (Partin et al., 2013; Dee et al.,258

2015a)259

Interannual Scaling. Simulated β values for δ18O of speleothem calcite differ substantially from observa-260

tions (see values in Table 2). We elected to exclude the βI calculation from our analysis of the observations261

because the data were not annually resolved; after binning the spectral data, there were not enough points262

to generate meaningful values for the interannual slope (see SI Section S7). Nevertheless, to investigate the263

impacts of the proxy system on βI , we experiment with a range of values for karst transit time to isolate the264

effects of parametric uncertainties in our representation of the karst system for one site (Cascayunga). For265

the initial simulation, all site PSM-generated data assume the karst transit time (τ) is one year. However,266

spectral characteristics of the simulated cave dripwater signal are largely dependent on groundwater storage267

time: βI increases sharply with longer groundwater storage time (Fig. 5). The spectrum of simulated drip268

water values for τ = 2 years most closely resembles the observed time series over interannual to decadal269

timescales.270

The parameter space simulation shown in Fig. 5 allows to quantify how much of the change in β is due271
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to karst processes alone (and see Fig. 1b). As with the ice core data, autocorrelation exists in karst systems272

on interannual timescales. Mixing in the karst and soil moisture includes the isotopic memory of water273

that enters the system from previous years, generating steeper β values. Characterizing the true spectrum of274

climate variability for these caves is thus complicated if karst parameters are poorly constrained or unknown.275

Decadal to Centennial Scaling. At Cascayunga cave, a steeper spectral slope emerges in the paleoclimate276

observations (βD = 1.41) compared to the GCM (βD = 0.60) at low frequencies. Referring back to Fig. 1b.,277

the ‘PSM+white noise’ imposed βD for speleothems is 0.12, which is smaller than the observed data-model278

discrepancy in βD for all cave sites (Table 2). For speleothem data from Cascayunga and Diva de Maura,279

observed low frequency variability greatly exceeds that simulated by the climate model, proxy system effects280

aside (see SI Figure S3).281

The speleothem PSM highlights the fact that on interannual to decadal timescales, we can essentially282

obtain a β value in agreement with observations simply as a function of the karst parameters. On longer283

timescales, the simulated spectra tend to flatten while the observed spectra continue to show increased low-284

frequency variance, potentially indicative of climate processes resulting in a spectrum similar to what we285

would expect from a power law system (see Fig. 5).286

3.2.4. Tree Ring Cellulose287

We employ two published records of Asian Tree-Ring Cellulose δ18O (Table 1), both which demonstrate288

the tree ring cellulose isotope ratios are sensitive to regional precipitation and humidity. Our proxy system289

model for oxygen isotopes in wood cellulose converts water-isotope enabled model output to tree ring cel-290

lulose δ18O (Evans, 2007). Table 2 gives the β values for simulated vs. observed δ18OCELLULOSE and power291

spectra for both simulated and observed oxygen isotopes in tree cellulose are shown in Fig. 6.292

Interannual Scaling. On interannual time scales, the simulated spectral slopes vary compared to those of293

observed Asian tree ring series. The discrepancy is particularly apparent for the Boibar site (panel 6a.),294

where βI = 0.88 (vs. 0.41 simulated). We hypothesized that autocorrelation due to soil water storage and295

isotopic mixing prior to use of the water by the tree would lead to a steepening of the spectra of the GCM +296

PSM simulated cellulose records. However, the βI values for simulated oxygen isotopes in tree cellulose are297

variable compared to observations.298
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In this case, it is possible that the proxy system processes that redden the signal on interannual timescales299

are poorly represented, or not represented at all by the GCM or PSM. Potential confounding factors include300

improper simulation of soil moisture storage and isotope ratios by the GCM, or a failure of the PSM to301

capture secondary tree growth effects, for example.302

Decadal to Centennial Scaling. The GCM+PSM simulated cellulose time series do not capture the steeper β303

values observed in the measured data at Lhamcoka, and in fact are negative; none of the processes described304

in the PSM contribute to scaling behavior in the simulated signal. As discussed, this could reflect gaps in305

our understanding of the complexity of how tree cellulose oxygen isotopes operate, or indicative of a lack of306

variability simulated by the GCM. The discrepancies worsen on longer timescales (Fig. 6), and the absolute307

variances for Lhamcoka and Boibar are 0.46 and 0.32 (observed), respectively, as compared to 0.02 and308

0.009 (simulated) (see SI Section S3).309

3.2.5. Tree Ring Width310

Previous work by Franke et al. (2013) suggested that biological proxies such as trees tend to add in au-311

tocorrelation, which makes proxy records ‘redder’ than the background climate they are recording. Hydro-312

climate tree-ring proxies often reflect soil moisture rather than temperature or precipitation, which exhibits313

higher PSD at decadal frequencies. Since we rely on these records for reconstructions, these reconstructions314

may tend toward more low-frequency variability compared to the input climate signal. Proxy system mod-315

eling addresses this spectral bias: we model the growth response of trees with climate for Western North316

America using the VS-Lite forward model (Tolwinski-Ward et al., 2010). The four sites we consider (Tab.317

1 for references) record over 1000 years of climate and is sensitive to a combination of precipitation and318

temperature. However, tree growth is influenced by a complex relationship with age which must be removed319

by detrending the data before a chronology can be used as a climate proxy. Invariably, detrending either par-320

tially removes the low-frequency climate signal from the record, or over-emphasizes some of the age-growth321

relationship masquerading as climate (Cook et al., 1995). In orsder to fully mimic real tree-ring chronolo-322

gies, we use VS-Lite to model each individual tree at the site using simulated temperature and precipitation323

then add in the age-growth curves from the actual trees calculated using the regional curve standardization324

method (RCS) (Briffa et al., 1992; Dupouey et al., 1992). We also incorporate a small error term to mimic325
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the natural variability within a forest, such that 60% of each tree’s variance is controlled by climate and 40%326

is noise. As each tree is modeled individually, most of the noise is removed when we combine multiple327

trees into a single chronology. Finally, we pre-whiten and build a chronology with the pseudoproxy trees328

using ARSTAN (Cook, 1985) and six different detrending methods (RCS, negative exponential, modified329

negative exponential, linear, spline, and Hugershoff) using the same methodology employed when creating330

a real-world chronology.331

To illustrate the effects of detrending methodology on retrieved climate spectrum, Fig. 7 shows the332

temperature, precipitation, modified negative-exponential detrended proxy vs. pseudoproxy chronology, and333

the associated β values are reported in Table 2, (bottom panel, and see SI Tab. S6). In addition, for each site,334

we plot the VS-Lite-only PSM simulation without added age-growth curves or detrending to demonstrate335

the importance of the age-growth relationship and detrending method on the power spectrum. Finally, to336

estimate reasonable errors for our VS-Lite generated pseudoproxy data, we performed 100 Monte-Carlo337

simulations resampling within a range of reported growth parameter errors.338

Interannual Scaling. The substantial difference in β for the TRW PSM (see Fig. 1c., βI = 1.53, βD = 0.06)339

stems from the seasonal growth parameterization of VS-Lite: autocorrelation arises and reddens βI because340

the forward model includes part of the previous year’s growth in the current season’s growth. However,341

in the final spectrum given for the TRW time series in Fig. 7, the large positive βI values are not readily342

apparent. The detrending applied to each of the TRW chronologies tends toward a blue spectrum, removing343

variance on both interannual and decadal timescales.344

Decadal to Centennial Scaling. For each site, the spectrum of observed tree ring width proxy agrees well (in345

terms of similarity of power spectra) with the pseudoproxy detrended with the same method. To illustrate346

this fully, Figures S7 and S8 in the SI show the full spectra for five frequently used detrending options347

used on each of our four sites. The power spectra for each of the detrending methods diverge at periods348

greater than 200 years. We choose to cut off the calculations for β at the 200 year period, so the divergence349

of detrending methods is relatively modest (Table 2). We find that when comparing climate models to350

TRW data, the detrending method has a large impact on the low-frequency spectral characteristics of both:351

aggressive detrending methods tend to remove low frequency variability (demonstrated by Table 2). Table 2352
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also illustrates the RCS method is most conservative in maintaining low-frequency TRW variability. In353

general, using the same detrending method for both proxy and pseudoproxy is essential.354

4. Spectral characteristics of the PAGES2k Network355

We extend our analysis to a larger number and a wider geographic range of sites using the PAGES2k356

Phase 1 Network (PAGES2K Consortium, 2013). The PAGES2k data serves as an expanded test of our357

results in Section 3.2, and allows us to assess our interpretations of how proxy systems affect the simulated358

spectra on a broad geographic scale. Both sets of results are summarized in Table 2, and our experimental359

treatment of the PAGES2k data is described in detail in SI Section S9.360

First, we compare GCM+PSM simulated proxy data (SPEEDY-IER, CCSM4) data to observed proxy361

data from the PAGES2k network. Our analysis includes ice core δ18O [NOBS=22, NPS M=22], coral δ18O362

[NOBS=10,NPS M=10], and tree ring width [NOBS=407, NPS M=116]. Differences in site numbers reflect the363

fact that multiple proxy sites are often collected in a single model grid cell. Raw GCM β value distributions364

are compared to the GCM-PSM output in Fig. 8 to examine the impact of translating GCM data to proxy365

units (i.e. what is the contribution of the PSM alone?) The figure shows climate fields (e.g. temperature,366

precipitation, SST, SSS) from the GCM plotted alongside PSM-simulated proxy data. We find that the ice367

core PSM β value distribution is significantly higher than both the precipitation and temperature β distribu-368

tions due to diffusion in the PSM. The tree ring PSM (VS-lite) β distribution is slightly lower than that of369

temperature, and quite similar to precipitation. Finally, the coral PSM β value distribution appears to be a370

combination of SSS and SST (Fig. 8c). On decadal-centennial scales, PSM βD value distributions appear to371

incorporate elements of their associated climate input variables (especially for ice cores, which overlap with372

temperature and precipitation distributions). Although interannual tree ring βI value distributions overlap373

with both temperature and precipitation, coral βI value distributions are lower than SSS and higher than SST374

(SI Fig. S5 and S6).375

There is limited agreement in the distribution of β values in observed vs. PSM-generated ice core and376

tree ring data, illustrated in Fig. 8. However, according to a Wilcoxon/Mann-Whitney (Rank-Sum) test,377

the observed and simulated β values are significantly different for all three types of paleoclimate archives,378

depending on timescale (Table 2). Simulated ice core βI values are too large, whereas the simulated tree ring379

17



width βI values are too small compared to the PAGES2k data (Figure 8a, b). As discussed in Section 3.2.2,380

differences between the simulated and observed differences in β are timescale-dependent. The PAGES2k and381

PSM βD values are not significantly different for ice cores, and βI for both simulated and observed corals382

are similar on interannual timescales. But, the mismatch remains in coral and tree ring width data at decadal383

scales, and in ice core and tree ring data at interannual scales (SI Fig. S5 and S6).384

Complementary to this analysis, we calculated the absolute variance in the modeled vs. observed data385

for the PAGES2k sites (SI Figure S2) and find that for all proxy types, the range of absolute variance in386

the PAGES2k observations exceeds the range of variances simulated by the GCM+PSM pseudo proxies at387

decadal timescales. The enhanced low-frequency variability in the PAGES2k corals and TRW at decadal388

timescales suggests agreement with the results of our case studies (see Table 2): PSMs help explain dif-389

ferences in observed vs. simulated variance at interannual timescales, but as we increase the timescale of390

variability to decadal and centennial periods, high-resolution archives like tree-rings and corals tend toward391

larger variance than the GCM simulates, even with PSMs (Fig. 8e, f).392

5. Discussion393

We reevaluated observed disagreement between archives of past climate variability and a water isotope-394

enabled GCM simulation by including conceptual forward models describing proxy system processes. In395

doing so, we provided a proof of concept demonstrating the usefulness of proxy system modeling in data-396

model comparison: without a bridge translating between GCMs and proxy data, one would be uncertain of397

the true differences between simulated and observed decadal to centennial scale climate variability. With398

consideration of the complex ways in which proxy systems may alter the input climate signal, PSMs allow399

us to quantify the effects of these processes explicitly. While many previous studies have evaluated models400

and data in the frequency domain, we extended this analysis by incorporating PSMs prior to calculating the401

spectra of GCM data. We find that translating the GCM simulation to proxy units matters, as demonstrated402

through several case studies. Physical processes and measurement biases exist in proxy systems that act to403

obfuscate the original climate signal and alter the spectrum of variability on interannual timescales. How-404

ever, these confounding factors are not directly related to the continuum of climate variability, and thus the405

source of the discrepancy between climate model and proxy data may sometimes have origins other than a406
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shortcoming of the GCM simulations.407

To address this, PSMs allow us to explicitly resolve and capture processes that generate emergent auto-408

correlation at high frequencies for each proxy type (rather than accounting for it after the fact). We identified409

processes consistent with an auto-regressive (AR1) behavior (mixing in the karst, diffusion, and seasonal410

growth memory) that have a large impact on βI of the simulated proxy data, but which do not reflect a true411

climate signal. As demonstrated in Section 3.1, the magnitude of the change in βI due to autocorrelation-412

generating processes alone can be quantified explicitly using this framework. In Section 3.2, we showed that413

constraining proxy system parameters may prove essential for a robust understanding of model/data discrep-414

ancies in the frequency domain. One might conclude in error, for example, that the GCMs are ‘wrong’ if415

they cannot replicate low frequency climate variability observed in archives for precipitation amount (e.g.416

speleothems) when, in fact, the karst system mixing controls decadal-centennial scaling behavior in caves.417

Caution is needed when comparing models and data when such confounding proxy system effects are poorly418

constrained; the GCM+PSM framework narrows the gap between raw GCM data and paleoclimate data, af-419

fording heightened awareness of confounding proxy system processes.420

Importantly, we find that modeling proxy system processes helps resolve model-data discrepancies on421

interannual to decadal timescales, but does not account for the mismatch in variance on longer (multi-422

decadal to centennial) timescales. The paleoclimate archives contain more variance on longer timescales,423

independent of known proxy processes, than Earth system models currently simulate for surface temperature424

and precipitation. In agreement with studies such as Ault et al. (2013) and Laepple and Huybers (2014a,b)),425

our analysis suggests that for many proxy types, our GCM simulation falls short of replicating the spectral426

characteristics and absolute variance (SI Sec. S3, Figure S2) of the paleoclimate archives at decadal to427

centennial timescales, even with the additional bridge provided by the water isotope physics and PSMs.428

However, the simplified nature of both the climate and proxy system models limits what can be learned429

from them. Some important long-term climate processes may lacking from this last millennium simulation,430

performed with an intermediate complexity AGCM. Additionally, proxy archives may harbor additional431

reddening or scaling processes not included in our simplified PSMs. Nonetheless, the broader PAGES2k-432

PSM comparison conducted in Section 4 generally suggest that greater care is needed in contrasting raw433

GCM data directly with paleoclimate data, due to the reddening effect of many proxies on the input climate434
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signal.435

We acknowledge a number of limitations of this work. In practice, it is difficult to diagnose how much436

of the ‘mismatch’ between models and data is due to uncertainties in the paleoclimate data itself, PSM error,437

GCM error, or a combination of all three. While our framework attempts to aid in these diagnostics, confir-438

mation of error sources requires further attention. Additionally, we were restricted to a single water-isotope439

enabled model with a long transient simulation, and as a result our ability to test the reconciliatory power440

of PSMs with multiple models is limited. At present, a repository of publicly archived water-isotope simu-441

lations spanning the last millennium is unavailable. In future work, we hope to strengthen our conclusions442

using ensemble runs with multiple isotope-enabled GCMs, or by repeating our analysis using a suite of dif-443

ferent spectral methods (Vyushin and Kushner, 2009; Rehfeld et al., 2011). Finally, variability observed in444

paleoclimate data is not fully characterized by its spectral properties alone. Novel methods for times series445

analysis have been explored in recent decades (e.g., techniques in nonlinear dynamics), and future work446

using these methods may help improve our comparative data-model analyses and lend further insight toward447

the underlying causes of the discrepancies.448

Translating model variables to proxy space using our best understanding of the proxy system physics449

and chemistry is useful for robust proxy-GCM data comparison. However, this conceptual bridge is far from450

complete. While the intermediate complexity PSMs used in this study help close the gap between models451

and data, much work remains to reduce biases in GCMs and to improve the physical representation of proxy452

systems by PSMs, which are, at present, extremely rudimentary. This analysis includes just a few PSMs,453

and would be enhanced through the development of additional PSMs. Further, it is unclear whether more454

advanced PSMs would generate scaling behavior as a result of processes within the archive alone; while455

our results suggest the opposite, this is potentially conditional on the type and complexity of PSM. With456

forthcoming advances in PSMs, much insight stands to be gained in the realm of model validation.457

In closing, we note that the mismatch between climate variability in GCMs and proxy archives harbors458

implications for the predictability of extreme climate events: if GCMs fail to simulate scaling behavior in459

the climate system, we may be underestimating statistics surrounding future temperature and precipitation460

changes, as well as the weather phenomena that accompany these changes (e.g. Ault et al., 2014). In particu-461

lar, we leave ourselves vulnerable to impacts of unpredicted and unexpected low-frequency climate viability.462
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Moreover, recent studies have highlighted the dependence of climate change rate estimates on measurement463

timespan, and suggest that the real pace of abrupt climate variability in the past may be dramatically underes-464

timated (Kemp et al., 2015). Given the growing importance of decadal climate prediction, it is important that465

both the modeling and paleoclimate communities work together to resolve a best estimate of both absolute466

low-frequency climate variability σD and βD using robust methodology. We hope that the work presented in467

this paper lays the groundwork for more advanced data-model comparison strategies and will lend further468

insight to this important open question.469
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Corals: PSM-simulated Spectrum vs. Measured Spectrum

Varying α2, [δ18OCORAL ANOM = α1·SSTANOM + α2·SSSANOM]
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Figure 2: Coral Aragonite Model-Data Comparison: simulated (pink) and measured (black) spectrum for Palmyra coral data, as

well as the effects of altering α2 at Palmyra island alongside the climate inputs to the model (SST, SSS). Straight orange lines are the

calculated mean slopes across both decadal to centennial (20-200, βD) and interannual (2-8, βI ) timescales. The black-dotted envelope

represents the full range of outcomes given the perturbed salinity parameter space. Low frequency variance observed in the coral data

(black dashed line) greatly exceeds that of the simulated pseudo coral data (pink), and the discrepancy grows with increasing timescale.

Also shown: simulated sensitivity to salinity changes and potential parameter uncertainties in the PSM (α2), effects on β, (faint black

dots), which does not help account for the model-data discrepancies. We removed the mean from all fields prior to computed the PSD.
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Ice Cores: PSM-simulated Spectrum vs. Measured Spectrum
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Figure 3: Ice Core Model-Data Comparison. Estimated Power Spectral Density for Simulated vs. Observed δ18O of ice at four sites:

(a) NGRIP, (b) Quelccaya, (c) Austfonna, (d) Lomonosovfonna. The PSD for each PSM-generated record is shown (red) alongside

climate inputs of temperature (dark blue), precipitation (light blue), and δ18OP (purple). In all cases, the observed ice core record

is plotted in black (dashed). Straight orange lines are the calculated mean slopes across both decadal to centennial (20-200, βD) and

interannual (2-8, βI ) timescales. Diffusion in the ice core PSM causes higher-than-observed spectral slopes at high frequencies, and

may suggest that the simulation of diffusion and compaction is overestimated. PSM-simulated ice cores do not capture the observed

higher variance at low-frequencies. We removed the mean from all fields prior to computed the PSD.

29



200 100 50 20 10 8 6 4
Period (Years)

10−1

100

101

P
S

D

Modeled δ18OP , σ = 0, βI =-0.1, βD =0.1
Modeled δ18OICE, σ = 1x, βI =-0.8, βD =0.1
Observed δ18OICE, βI =-0.1, βD =-0.1

10,000-sim range varying σ:[0x 2x]

SPEEDY-IER [1000-2005] + Ice Core PSM at NGRIP: Effects of Diffusion on βIce Cores: PSM-simulated Spectrum vs. Measured Spectrum

Modeling the Effects of Diffusion and Compaction: NGRIP

101

100

10-1

P
S

D

   200          100            50                   20             10   8      6       4         2 
Period (Years)

βI=0.73, βD=-0.48

βI=0.99, βD=-0.09

Figure 4: Ice Core Model-Data Comparison at NGRIP: effect of diffusion length (σ) on β. Estimated power spectral density for

simulated (purple) vs. observed (black) δ18O of ice and the effect of varying diffusion length parameters. The grey shaded region spans

experiments resampling the data 1000 times varying the diffusion length from 1
2 · σ to 2 · σ. In the case where σ = 0 (the royal blue

line, δ18OPRECIP), GCM-simulated data is generally in agreement with the observations.
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Speleothems: PSM-simulated Spectrum vs. Measured Spectrum

Modeling the Effects of Groundwater Transit Time: Cascayunga Cave
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Figure 5: Speleothem Calcite Model-Data Comparison: the effect of Karst Transit Time (τ) on β. Simulated vs. Observed δ18O
of speleothem calcite at Cascayunga Cave. PSD is plotted, simulated using an ensemble of plausible values (6 months to 5 years) for

the karst transit time parameter, τ. The spectrum reddens as the transit time increases. The orange solid line indicates the mean β
slope for the observations. Figure illustrates broadening disagreement between simulated and observed speleothem δ18O approaching

decadal-centennial timescales.

31



500 200 100 50 20 10 8 6 4
Period (Years)

10−4

10−3

10−2

10−1

100

101

102

P
S

D

SPEEDY-IER + Cellulose PSM, Boibar, Pakistan

T
P
δ18OPRECIP

δ18OSOIL

δ18OCELL, MODELED, βD,βI=0.13,-0.2

δ18OCELL, OBSERVED, βD, βI=-0.26,-0.81

500 200 100 50 20 10 8 6 4
Period (Years)

10−4

10−3

10−2

10−1

100

101

102

P
S

D

SPEEDY-IER + Cellulose PSM, Lhamcoka, Tibet

T
P
δ18OPRECIP

δ18OSOIL

δ18OCELL, MODELED, βD,βI=-0.0,-0.31

δ18OCELL, OBSERVED, βD,βI=-0.68,-2.37

Tree-Ring Cellulose: PSM-simulated vs. Measured Spectrum

a. Boibar, Pakistan

b. Lhamcoka, Tibet

--0.55,0.41
-0.02,0.88

-0.54,0.42
0.91,0.27

Figure 6: Tree-Ring Cellulose Model-Data Comparison. Estimated Power Spectral Density for Simulated (green) vs. Observed

(black) δ18O of tree ring cellulose at (a) Boibar, Pakistan and (b) Lhamcoka, Tibet. We removed the mean from all fields prior to

computed the PSD.
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SPEEDY-IER-generated TRW for Southwest US Trees
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Figure 7: Tree-Ring Width Model-Data Comparison: the effect of detrending method on β. For each site, the original measured TRW

is plotted in black, along with the PSM (VS-Lite) inputs of temperature (red), precipitation (blue), and the simple VS-Lite generated

pseudoproxy data (dark green dashed), which does not include detrending or growth-curve. The negative-exponential detrending

method was applied to both the real proxy data and the VS-Lite generated pseudoproxy data (bright green). To estimate reasonable

errors for simulated TRW, we took reported errors for the estimated growth parameters in 100 randomized possibilities (grey).
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βI, βD: PAGES2k Simulated vs. Observed 
a. Ice Core βI b. Tree Ring βI c. Coral βI

f. Coral βDe. Tree Ring βDd. Ice Core βD

Figure 8: Distribution of proxy βI , βD values, GCM+PSM vs. Observed, for the PAGES2k Phase 1 dataset: a. ice cores (blue,

left), tree-ring width (green, center), and coral data (orange, right) from PAGES2k (lighter colors) and GCM/PSM (darker colors). (a, b.,

d., e.): temperature (red), precipitation (dark blue) and PSM ice cores (light blue, right); SPEEDY-IER temperature (red), precipitation

(dark blue), and PSM tree-ring width (green, center); and (c., f.): CCSM4 sea-surface temperature (pink), sea-surface salinity (purple),

and PSM coral data (orange, right).
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